Microbe-Assisted Bioremediation of Pesticides from Contaminated Habitats 121
Chen, S., C. Liu, C. Peng, H. Liu, M. Hu and G. Zhong. 2012. Biodegradation of chlorpyrifos and its hydrolysis
product 3,5,6-trichloro-2-pyridinol by a new fungal strain Cladosporium cladosporioides Hu-01. PLoS One,
7(10): e47205.
DeClementi, C. and B. R. Sobczak. 2012. Common rodenticide toxicoses in small animals. Vet Clin. North Am. Small
Anim. Pract. 42(2): 349–360.
Degrendele, C., J. Klánová, R. Prokeš, P. Příbylová, P. Šenk, M. Šudoma, M. Röösli, M. A. Dalvie and S. Fuhrimann.
2022. Current use pesticides in soil and air from two agricultural sites in South Africa: implications for
environmental fate and human exposure. Sci. Total Environ. 807(Pt 1): 150455.
Deng, Y.-J. and Wang, S. Y. 2016. Synergistic growth in bacteria depends on substrate complexity. J. Microbiol. 54(1):
23–30.
Deshmukh, R., A. A. Khardenavis and H. J. Purohit. 2016. Diverse metabolic capacities of fungi for bioremediation.
Indian J. Microbiol. 56(3): 247–264.
Dosnon-Olette, R., P. Trotel-Aziz, M. Couderchet and P. Eullaffroy. 2010. Fungicides and herbicide removal in
Scenedesmus cell suspensions. Chemosphere. 79(2): 117–123.
Dua, M., A. Singh, N. Sethunathan and A. Johri. 2002. Biotechnology and bioremediation: successes and limitations.
Appl. Microbiol. Biotechnol. 59(2): 143–152.
Ertit Taştan, B. and G. Dönmez. 2015. Biodegradation of pesticide triclosan by A. versicolor in simulated wastewater
and semi-synthetic media. Pestic Biochem Physiol. 118: 33–37.
Fang, H., Y. Q. Xiang, Y. J. Hao, X. Q. Chu, X. D. Pan, J. Q. Yu and Y. L. Yu. 2008. Fungal degradation of chlorpyrifos
by Verticillium sp. DSP in pure cultures and its use in bioremediation of contaminated soil and pakchoi.
Int. Biodeterior. Biodegradation. 61(4): 294–303.
Foong, S. Y., N. L. Ma, S. S. Lam, W. Peng, F. Low, B. H. Lee, A. K. Alstrup and C. Sonne, 2020. A recent global
review of hazardous chlorpyrifos pesticide in fruit and vegetables: prevalence, remediation and actions needed.
J. Hazard. Mater. 400: 123006.
Gonçalves, C. R. and P. D. S. Delabona. 2022. Strategies for bioremediation of pesticides: challenges and perspectives
of the Brazilian scenario for global application – A review. Environ. Adv. 8: 100220.
Goswami, S., K. Vig and D. K. Singh. 2009. Biodegradation of α and β endosulfan by Aspergillus sydoni. Chemosphere.
75(7): 883–888.
Goulson, D. 2013. An overview of the environmental risks posed by neonicotinoid insecticides. J. Appl. Ecol. 50(4):
977–987.
Gupta, M., S. Mathur, T. K. Sharma, M. Rana, A. Gairola, N. K. Navani and R. Pathania. 2016. A study on metabolic
prowess of Pseudomonas sp. RPT 52 to degrade imidacloprid, endosulfan and coragen. J. Hazard Mater. 301:
250–258.
Gupta, R. C. 2014. Carbamate pesticides. pp. 661–664. In: P. Wexler [Ed.]. Encyclopedia of Toxicology (Third
Edition). Oxford. Academic Press.
Hajihassani, A., K. S. Lawrence and G. B. Jagdale. 2018. Plant parasitic nematodes in Georgia and Alabama Plant
parasitic nematodes in sustainable agriculture of North America. pp. 357–391. Springer.
Hamad, M. T. M. H. 2020. Biodegradation of diazinon by fungal strain Apergillus niger MK640786 using response
surface methodology. Environ. Technol. Innov. 18: 100691.
Harms, H., D. Schlosser and L. Y. Wick. 2011. Untapped potential: exploiting fungi in bioremediation of hazardous
chemicals. Nat. Rev. Microbiol. 9(3): 177–192.
Hernández-Ramos, A. C., S. Hernández and I. Ortíz. 2019. Study on endosulfan-degrading capability of Paecilomyces
variotii, Paecilomyces lilacinus and Sphingobacterium sp. in liquid cultures. Bioremed. J. 23(4): 251–258.
Hoshi, N., T. Hirano, T. Omotehara, J. Tokumoto, Y. Umemura, Y. Mantani, T. Tanida, K. Warita, Y. Tabuchi,
T. Yokoyama and H. Kitagawa. 2014. Insight into the mechanism of reproductive dysfunction caused by
neonicotinoid pesticides. Biol. Pharm. Bull. 37(9): 1439–1443.
Huang, D.-L., G.-M. Zeng, C.-L. Feng, S. Hu, X.-Y. Jiang, L. Tang, F. F. Su, Y. Zhang, W. Zeng and H. L. Liu. 2008.
Degradation of lead-contaminated lignocellulosic waste by Phanerochaete chrysosporium and the reduction
of lead toxicity. Environ. Sci. Technol. 42(13): 4946–4951.
Huang, Y., Xiao, L., Li, F., Xiao, M., Lin, D., Long, X. and Wu, Z. 2018. Microbial degradation of pesticide residues
and an emphasis on the degradation of cypermethrin and 3-phenoxy benzoic acid: a review. Molecules. 23(9):
2313.
Hussein, M., A. Abdullah, N. Badr El-Din and E. Mishaqa. 2017. Biosorption potential of the microchlorophyte
Chlorella vulgaris for some pesticides. J. Fertil. Pestic. 8(01): 1000177.
Ibrahim, W. M., M. A. Karam, R. M. El-Shahat and A. A. Adway. 2014. Biodegradation and utilization of
organophosphorus pesticide malathion by cyanobacteria. Biomed Res. Int. 392682.
Jayaraj, R., P. Megha and P. Sreedev. 2016. Organochlorine pesticides, their toxic effects on living organisms and their
fate in the environment. Interdiscip. Toxicol. 9(3-4): 90–100.